Energy and Information in Big Bang

Most recent answer: 01/16/2015

Can the Landauer principle provide an explanation for the Big Bang's enormous energies?According to Landauer’s Principle, the erasure of a logical bit always mirrors a physical change in entropy, which causes at least a minimum quantum of energy to be expelled as heat. Even the reduction in the logical capability to remove uncertainty can be interpreted as information loss relative to the evolutionary path of the computing system. Each lost bit has an inevitable energy cost, generating at least 3zJ of heat to the environment at room temperature, but usually much more is dissipated. Erasing an unknown bit (as in changing either 0 or 1 to a NULL state) therefore means there is a transfer of this entropy to the environment. Any physical implementation of any logical operation that loses 1 bit of information, must necessarily dissipate a corresponding amount of heat. As already noted, this has been experimentally confirmed. If the universe were deemed analogous to a reversible computer, the information registers would be preset. However, if the set of all information registers included those for not only our universe but also for other possible universes (as in a multiverse model), the quantum fluctuation which catalyzes the beginning of our universe would cause the information associated with every other possible universe to no longer be accessible. It is in this context that I have speculated that the Landauer Principle might provide an explanation of the Big Bang's enormous energies.Proposition 1:“Everything is Information” John A. Wheeler "In successive chapters of the book, "Information and the Nature of Reality: From Physics to Metaphysics", Paul Davies, Seth Lloyd, and Henry Pierce Stapp challenge some widely held assumptions about physical reality. Davies asks what happens if we do not assume that the mathematical relations of the so-called laws of nature are the most basic level of description, but rather if information is regarded as the foundation on which physical reality is constructed. Paul Davies argues that instead of taking mathematics to be primary, followed by physics and then information, the picture should be inverted in our explanatory scheme, so that we find the conceptual hierarchy: information laws of physics matter. Lloyd's view of the computational nature of the universe develops this understanding by treating quantum events as 'quantum bits', or qubits, whereby the universe 'registers itself'."John Wheeler’s Participatory UniverseVlatko Vedral, Decoding Reality: The Universe as Quantum InformationThe universe as quantum computer ([1312.4455] The universe as quantum computerProposition 2: Information preexists the Big BangBlack hole based thermodynamics and cosmology have provided support for two theories:1. Information is conserved. (Black hole information paradox)2. The holographic principle. (See Holographic principle)However, although black holes provide the genesis/support for these theories, they are in conflict if we assume the following:1. The conservation of information law is "true"..2. The holographic principle is "true".3a. The Hubble expansion of the universe is "true"and/or3b The volume of the universe immediately after the Big Bang was smaller than it is now.The problem is: the information of the universe shortly after the Big Bang, as determined using the holographic principle, would have been less than it is today and, in an expanding universe, the information available to the universe must continue to increase. However, if the information of the universe increases, where does this information come? How could such an increase in information be consistent with a conservation of information law? It is my conjecture that the information reservoir comes first. Then, the Big Bang occurs, and expands, within this preexistent contextuality. Proposition 3:The loss of access to information (entropy) generates energy (heat).Rolf Landauer wrote: "Information is not a disembodied abstract entity, it is always tied to a physical representation." and, according to the Landauer Principle, the loss of access to information (entropy) results in a heat penalty. See:Landauer's principle and according to a March 8, 2012 article appearing in "Nature. Note that the Landauer Principle has been experimentally verified. (See: Antoine Bérut, et al., "Experimental verification of Landauer's principle linking information and thermodynamics" Nature 483, 187–189 (08 March 2012) andResearchers prove Landauer was right in saying heat is dissipated when memory is erased Proposition 4:The Big Bang was a quantum fluctuation which fixed the laws of physics for our universe but simultaneously cut our universe off from all other possible universes. Quantum fluctuationVacuum genesisSee: Lawrence M. Krauss, A Universe from Nothing: Why There Is Something Rather than Nothing Conclusion:The Landauer principle provides an explanation for the Big Bang's enormous energies and, if the loss of information access took a few milliseconds, the universe's inflationary expansion.
- Jon Trevathan (age 66)
Warrenton, VA USA

This is a very thought-provoking question. The basic law of energy conservation doesn't depend on whether you choose the conventional dynamical laws--> information or information laws--> dynamics ways of thinking about things.  In the physical picture Landauer was discussing, the energy dissipation requires some interaction of the information-containing system with an outside system, i.e. an interaction Hamiltonian. Now in the Big Bang, including standard multiverse pictures, there's no outside to interact with. So whatever is happening with information cannot account for anything about energy in those pictures. There are pictures with an outside to interact with. One of these is the ekpyrotic idea (), involving collisions of branes in a higher dimenional space. I don't think that picture particularly requires rethinking in terms of information. Another, very new, picture tries to deal with the quantum "measurement" problem by picturing a swarm of interacting classical-like universes. () Perhaps in that picture, where there is a genuine interaction Hamiltonian with an outside, the information-energy connection could be more like what you describe. That's a very intriguing idea, but beyond anything for which I could give you an intelligent evaluation.

Mike W.

posted without vetting until Lee returns- maybe not a good idea on something this tricky!

(published on 01/16/2015)

Follow-up on this answer